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MCMC methods are often the only reasonable way to sample e Generate T training trajectories (Xl(s), . ,X,E,Sln) s=1,..., T using ULA algorithm;
from the distribution of interest, especially in high dimensions. o Estimate functions Q,(x) using a modified least-squares criteria:
But MCMC algorithms are known to suffer from high variance, T Netnr
. . . 2
nence some variance reduction techniques are called for. Qr — arg min Z Z |f sy (X(s)) (0.4)
n this work we introduce the new variance reduction method vev T )
for Markov Chains based on discrete time martingale represen- for 1 < r < Nyune, ¥ - class of polynomials W = {4(x)[)(x) = ZHSHSm aex®)

tation. Proposed approach is fully non-asymptotic and does
not require any type of ergodicity or special product structure

of the underlying density. ark(x) = EH(§) Qr(x — yuu(x) + /7€), § ~ N(O, 1)
e Estimate 7(f) by 7V(f) — MK,n,ntmnC(f) where

_ N+n I p |
~ 1 R
Mflé/,n,ntmm(f) — E E E ap—/,k(X/—l)Hk(gl)]Iﬂp _ /‘ < Ntrunc

e Suppose that we are willing to estimate expectation of some N1 o<k <K I=N+1
function f w.r.t. measure 7: i

7(f) Z:/f(X)T('(dX)

e compute estimates of a, x(x) (possible in closed form):

: S MainResk
e MCMC approach: based on samples Xi, ..., Xy, from ap- Our analysis is carried out under the following two assumptions:
propriate Markov Kernel P, estimate 7(f) by the ergodic av- (H1) [Lipschitz continuity] The potential U is differentiable and VU is Lipschitz, that is,
erages of the form there exists L < oo such that
Z (X VU(X) = VU < Lox—yl, xy €
Ly (H2) [Convexity outside a ball] There exist Ky > 0, My > 0 and my > 0 such that for any
e Consider the class G : m(g) = 0,Vg € G, then it is valid to x that [|x|| = Ky it holds
estimate 7 (f) by (D*U(x),x) > (mu/2)]Ix]]>
| N Theorem. Assume (H1) and (H2). Suppose additionally that a bounded function f and
mN(f — g) == Z f(X:) — g(X) 1= VU are K x d > 2 times continuously differentiable and for all x € R? and k satisfying
TNt 0 < ||k|| < K,
e How to construct g? 0%f(x)| < Br, |0*u(x)| < B.. (0.5)

Then it holds

~ Martingale decomposition Var (micalf)) S

olet (£,),>1 € R™ be random vectors with distribution P,
denote G; = o (&1, ..., &) and Gy = triv;

e Let (¢x)k>0 be a complete orthonormal system in L*(R™, P;)
with ¢g = 1;

e Consider a Markov chain

Xp — (Dp(Xp—la fp)7 p=12 ..., Xog = X, (()]_) Gaussian Mixture Model. We consider ULA-generated sample with 7 given by the mixture of two Gaussian distributions with equal
_ weights:
e For all Borel functions f : RY — R such that ) - L <xza§+x;a§) e RY
2 . o d/2 ’
E {|f(xp)\ ] < o0, it holds 2(2m)’)
with d = 2 and d = 8 and take a = ((2d)~Y/2,...,(2d)"V/?).

00 P Logistic regression. Suppose we have i.i.d. sample {(X;, Y;)} for i = 1,..., m with features X; € R9 and binary labels Y; € {0,1}.
f( ) _E [f( )‘ J] ~ : ~ 2. k X/ ] ¢k (f/) The binary logistic regression model defines the conditional distribution of Y given X by a logistic function

2 / 7y 67 x

4 e

d o 10X =1 + "X’
where for y € R where 0 is a model parameter. We put prior mq ~ N(0, 0°l4), the posterior density takes the form:
0p1400) = ELFOG)OH (€)X =41, p2 1, kR T
o
i=1

The target function is taken to be £(#) = S1=76;.

0, X) = ilo 07X, — Y;j)lo —0"X))],
o Fix step size v > 0. For U : RY — R. consider a Markov HY1%.%) ;[Yl E(O(07X)) + (1= Y log(0(=07 X))

chain (XP)P>07 XO — X where § € R? is a model parameter and ® is a cumulative distribution function of the N(0,1). We put prior mg ~ N (0, ?l,), the

— posterior density takes the form
XPH - Xp - VVU(XP) i 27€p+1’ (0'2) alY, X m Y log(d(67X Y:)log(®(—0"X 6
where (&) -, is an i.i.d. sequence of d-dimensional standard ey, )OceXp{Z[ log(®(67X,)) + (1 = Yi)log(®(—67X,))] - 202 | |2}

=1
Gaussian vectors.

e We use chain (0.2) to approximately sample from the density

m(x) = const e VX, (0.3)
e We can use Hermite polynomials o
(1) @ o IR I i
Hi(x) = ~—=¢" P , X €eR. - v | 1 4 PN
k l a X 4101 | - 1 1 |
as a complete orthonormal system : = S —
e We define normalized Hermite polynomials in R?: for x € R¢
and k = (kl, Cee kd) = 3B 2 & P 3B 7 & + oL 2 &
d
Hk(X) — H Hk (X) Flgu re 1: Boxplots of ergodic averages from the variance reduced ULA. Left: Gaussian Mixture in d = 8, central: Logistic regression, right: Probit regression. (0)
AN - ordinary empirical average , (CV-B) - our estimator, (ZV) - zero variance estimator, (CV) - diffusion approximation control variates
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