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Introduction

MCMC methods are often the only reasonable way to sample
from the distribution of interest, especially in high dimensions.
But MCMC algorithms are known to su↵er from high variance,
hence some variance reduction techniques are called for.
In this work we introduce the new variance reduction method
for Markov Chains based on discrete time martingale represen-
tation. Proposed approach is fully non-asymptotic and does
not require any type of ergodicity or special product structure
of the underlying density.

MCMC and control variates

• Suppose that we are willing to estimate expectation of some
function f w.r.t. measure ⇡:

⇡(f ) :=

Z

Rd

f (x) ⇡(dx)

•MCMC approach: based on samples X1, . . . ,XN+n from ap-
propriate Markov Kernel P , estimate ⇡(f ) by the ergodic av-
erages of the form

⇡n
n
(f ) :=

1

n

N+nX

i=N+1

f (Xi)

•Consider the class G : ⇡(g) = 0, 8g 2 G, then it is valid to
estimate ⇡(f ) by

⇡N
n
(f � g) :=

1

n

N+nX

i=N+1

f (Xi)� g(Xi)

•How to construct g?

Martingale decomposition

• Let (⇠p)p�1 2 Rm be random vectors with distribution P⇠,
denote Gj = �(⇠1, . . . , ⇠j) and G0 = triv;

• Let (�k)k�0 be a complete orthonormal system in L
2(Rm,P⇠)

with �0 = 1;
•Consider a Markov chain

Xp = �p(Xp�1, ⇠p), p = 1, 2, . . . , X0 = x , (0.1)

•For all Borel functions f : Rd ! R such that
E
h
|f (Xp)|2

i
< 1, it holds

f (Xp) = E [f (Xp)| Gj] +
1X

k=1

pX

l=j+1

ap,l ,k(Xl�1)�k (⇠l) ,

where for y 2 Rd

ap,l ,k(y) = E [f (Xp)�k (⇠l)|Xl�1 = y ] , p � l , k 2 N

Particular case: ULA

•Fix step size � > 0. For U : Rd ! R, consider a Markov
chain (Xp)p�0,X0 = x

Xp+1 = Xp � �rU(Xp) +
p

2�⇠p+1, (0.2)

where (⇠p)p�1 is an i.i.d. sequence of d -dimensional standard
Gaussian vectors.

•We use chain (0.2) to approximately sample from the density

⇡(x) = const e�U(x), (0.3)

•We can use Hermite polynomials

Hk(x) =
(�1)kp

k!
e
x
2/2 @

k

@xk
e
�x

2/2, x 2 R.

as a complete orthonormal system ;
•We define normalized Hermite polynomials in Rd : for x 2 Rd

and k = (k1, . . . , kd)

Hk(x) =
dY

i=1

Hki
(xi)

Algorithm

•Generate T training trajectories
⇣
X

(s)
1 , . . . ,X (s)

N+n

⌘
, s = 1, . . . ,T using ULA algorithm;

•Estimate functions Qr(x) using a modified least-squares criteria:

bQr = argmin
 2 

TX

s=1

N+n�rX

l=N+1

���f (X (s)
l+r)�  (X (s)

l
)
���
2

(0.4)

for 1  r  ntrunc,  - class of polynomials  = { (x)| (x) =
P

kskm
↵sx

s}
• compute estimates of ar ,k(x) (possible in closed form):

bar ,k(x) = EHk(⇠) bQr(x � �µ(x) +
p
�⇠), ⇠ ⇠ N (0, Id)

•Estimate ⇡(f ) by ⇡N
n
(f )� bMN

K ,n,ntrunc
(f ) where

bMN

K ,n,ntrunc(f ) =
1

n

N+nX

p=N+1

2

4
X

0<kkk<K

pX

l=N+1

bap�l ,k(Xl�1)Hk(⇠l)I{|p � l | < ntrunc

3

5

Main Result

Our analysis is carried out under the following two assumptions:
(H1) [Lipschitz continuity] The potential U is di↵erentiable and rU is Lipschitz, that is,

there exists LU < 1 such that

|rU(x)�rU(y)|  LU|x � y |, x , y 2d .

(H2) [Convexity outside a ball] There exist KU > 0, MU > 0 and mU > 0 such that for any
x that kxk � KU it holds

hD2
U(x), xi � (mU/2)kxk2.

Theorem. Assume (H1) and (H2). Suppose additionally that a bounded function f and
µ = rU are K ⇥ d � 2 times continuously di↵erentiable and for all x 2 Rd and k satisfying
0 < kkk  K ,

|@kf (x)|  Bf , |@kµ(x)|  Bµ. (0.5)

Then it holds

Var
�
⇡N
K ,n(f )

�
. n

�1�K�2,

Numerical Experiments

Gaussian Mixture Model. We consider ULA-generated sample with ⇡ given by the mixture of two Gaussian distributions with equal
weights:

⇡(x) =
1

2(2⇡)d/2

✓
�kx�ak22

2 +
�kx+ak22

2

◆
, x 2 Rd

with d = 2 and d = 8 and take a = ((2d)�1/2, . . . , (2d)�1/2).
Logistic regression. Suppose we have i.i.d. sample {(Xi ,Yi)} for i = 1, . . . ,m with features Xi 2 Rd and binary labels Yi 2 {0, 1}.
The binary logistic regression model defines the conditional distribution of Y given X by a logistic function

r(✓, x) =
e
✓Tx

1 + e✓
Tx
,

where ✓ is a model parameter. We put prior ⇡0 ⇠ N (0, �2Id), the posterior density takes the form:

⇡(✓) / exp

(
�YTX✓ �

mX

i=1

log(1 + e
�✓TXi)� 1

2�2
k✓k22

)
,

The target function is taken to be f (✓) =
P

i=d

i=1 ✓i .
Probit regression The log-likelihood of the model looks as follows

L(Y|✓,X) =
mX

i=1

⇥
Yi log(�(✓

TXi)) + (1� Yi)log(�(�✓TXi))
⇤
,

where ✓ 2 Rd is a model parameter and � is a cumulative distribution function of the N (0, 1). We put prior ⇡0 ⇠ N (0, �2Id), the
posterior density takes the form

⇡(✓|Y,X) / exp

(
mX

i=1

⇥
Yi log(�(✓

TXi)) + (1� Yi)log(�(�✓TXi))
⇤
� 1

2�2
k✓k22

)

Figure 1: Boxplots of ergodic averages from the variance reduced ULA. Left: Gaussian Mixture in d = 8, central: Logistic regression, right: Probit regression. (O)
- ordinary empirical average , (CV-B) - our estimator, (ZV) - zero variance estimator, (CV) - di↵usion approximation control variates
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