• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Neural Network Trained to Predict Crises in Russian Stock Market

Neural Network Trained to Predict Crises in Russian Stock Market

© iStock

Economists from HSE University have developed a neural network model that can predict the onset of a short-term stock market crisis with over 83% accuracy, one day in advance. The model performs well even on complex, imbalanced data and incorporates not only economic indicators but also investor sentiment. The paper by Tamara Teplova, Maksim Fayzulin, and Aleksei Kurkin from the Centre for Financial Research and Data Analytics at the HSE Faculty of Economic Sciences has been published in Socio-Economic Planning Sciences.

How can a stock market storm be predicted? Financial analysts and investors worldwide are eager to find the answer. A study by Tamara Teplova, Maxim Fayzulin, and Aleksei Kurkin from the HSE Centre for Financial Research and Data Analytics presents a novel approach to predicting short-term crises in the domestic stock market. The hybrid deep learning model developed by the researchers combines three architectures—Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM), and an attention mechanism—marking the first use of such a complex structure for Russian stock data.

The authors analysed data from 2014 to 2024, incorporating market and macroeconomic indicators—primarily the Moscow Stock Exchange IMOEX index—along with measures of investor sentiment. To predict the likelihood of a crisis within the next one to five trading days, the researchers first had to address several methodological challenges. First, market crises are relatively rare—accounting for at most a quarter of all events—which makes the training sample imbalanced and risks the model learning to ignore these infrequent signals. Second, investor behaviour is influenced not only by objective economic factors but also by subjective sentiments, which are difficult to formalise. To address these challenges, the researchers created composite indices of internal and external investor sentiment using the principal component method. These indices complement traditional macroeconomic and market variables, making it possible to capture hidden investor sentiment over longer forecasting horizons.

Tamara Teplova

'We present a hybrid TCN-LSTM-Attention model that combines deep learning with attention mechanisms. The model effectively handles imbalanced data, achieving an accuracy of 78.70% for same-day forecasts and 78.85% for predictions on the following trading day. Monthly retraining and the use of adaptive time windows have increased accuracy to 83.87%. Key factors influencing the forecasts include stock index values (similar to those used in technical analysis), total company capitalisation, and exchange rates,' explains Tamara Teplova, Professor at the HSE Faculty of Economic Sciences.

The developed system can be a valuable tool for investors, financial analysts, and regulators. It not only enables retrospective analysis of crisis periods but also allows reliable prediction of potential threats one to two days in advance. When combined with regular updates using new data, such a system can serve as the foundation for a dynamic risk-monitoring framework tailored to the specifics of the Russian market.

'This work is highly relevant for the national financial sector, providing effective tools for timely detection of market shocks—a critical need in an unstable macroeconomic environment,' Prof. Teplova emphasises.

The study was conducted with support from HSE University's Basic Research Programme within the framework of the Centres of Excellence project.

See also:

HSE University Develops Tool for Assessing Text Complexity in Low-Resource Languages

Researchers at the HSE Centre for Language and Brain have developed a tool for assessing text complexity in low-resource languages. The first version supports several of Russia’s minority languages, including Adyghe, Bashkir, Buryat, Tatar, Ossetian, and Udmurt. This is the first tool of its kind designed specifically for these languages, taking into account their unique morphological and lexical features.

HSE Scientists Uncover How Authoritativeness Shapes Trust

Researchers at the HSE Institute for Cognitive Neuroscience have studied how the brain responds to audio deepfakes—realistic fake speech recordings created using AI. The study shows that people tend to trust the current opinion of an authoritative speaker even when new statements contradict the speaker’s previous position. This effect also occurs when the statement conflicts with the listener’s internal attitudes. The research has been published in the journal NeuroImage.

Language Mapping in the Operating Room: HSE Neurolinguists Assist Surgeons in Complex Brain Surgery

Researchers from the HSE Center for Language and Brain took part in brain surgery on a patient who had been seriously wounded in the SMO. A shell fragment approximately five centimetres long entered through the eye socket, penetrated the cranial cavity, and became lodged in the brain, piercing the temporal lobe responsible for language. Surgeons at the Burdenko Main Military Clinical Hospital removed the foreign object while the patient remained conscious. During the operation, neurolinguists conducted language tests to ensure that language function was preserved.

AI Overestimates How Smart People Are, According to HSE Economists

Scientists at HSE University have found that current AI models, including ChatGPT and Claude, tend to overestimate the rationality of their human opponents—whether first-year undergraduate students or experienced scientists—in strategic thinking games, such as the Keynesian beauty contest. While these models attempt to predict human behaviour, they often end up playing 'too smart' and losing because they assume a higher level of logic in people than is actually present. The study has been published in the Journal of Economic Behavior & Organization.

HSE University and InfoWatch Group Sign Cooperation Agreement

HSE University and the InfoWatch Group of Companies marked the start of a new stage in their collaboration with the signing of a new agreement. The partnership aims to develop educational programmes and strengthen the practical training of specialists for the digital economy. The parties will cooperate in developing and reviewing curricula, and experts from InfoWatch will be involved in teaching and mentoring IT and information security specialists at HSE University.

Scientists Discover One of the Longest-Lasting Cases of COVID-19

An international team, including researchers from HSE University, examined an unusual SARS-CoV-2 sample obtained from an HIV-positive patient. Genetic analysis revealed multiple mutations and showed that the virus had been evolving inside the patient’s body for two years. This finding supports the theory that the virus can persist in individuals for years, gradually accumulate mutations, and eventually spill back into the population. The study's findings have been published in Frontiers in Cellular and Infection Microbiology.

HSE Scientists Use MEG for Precise Language Mapping in the Brain

Scientists at the HSE Centre for Language and Brain have demonstrated a more accurate way to identify the boundaries of language regions in the brain. They used magnetoencephalography (MEG) together with a sentence-completion task, which activates language areas and reveals their functioning in real time. This approach can help clinicians plan surgeries more effectively and improve diagnostic accuracy in cases where fMRI is not the optimal method. The study has been published in the European Journal of Neuroscience.

For the First Time, Linguists Describe the History of Russian Sign Language Interpreter Training

A team of researchers from Russia and the United Kingdom has, for the first time, provided a detailed account of the emergence and evolution of the Russian Sign Language (RSL) interpreter training system. This large-scale study spans from the 19th century to the present day, revealing both the achievements and challenges faced by the professional community. Results have been published in The Routledge Handbook of Sign Language Translation and Interpreting.

HSE Scientists Develop DeepGQ: AI-based 'Google Maps' for G-Quadruplexes

Researchers at the HSE AI Research Centre have developed an AI model that opens up new possibilities for the diagnosis and treatment of serious diseases, including brain cancer and neurodegenerative disorders. Using artificial intelligence, the team studied G-quadruplexes—structures that play a crucial role in cellular function and in the development of organs and tissues. The findings have been published in Scientific Reports.

New Catalyst Maintains Effectiveness for 12 Hours

An international team including researchers from HSE MIEM has developed a catalyst that enables fast and low-cost hydrogen production from water. To achieve this, the scientists synthesised nanoparticles of a complex oxide containing six metals and anchored them onto various substrates. The catalyst supported on reduced graphene layers proved to be nearly three times more efficient than the same oxide without a substrate. This development could significantly reduce the cost of hydrogen production and accelerate the transition to green energy. The study has been published in ACS Applied Energy Materials. The work was carried out under a grant from the Russian Science Foundation.